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Abstract 

Ewald's conception of the dynamical theory of 
diffraction permits the dispersion equation to be 
written in a simple analytical form. Bragg reflection, 
grazing incidence, Bragg reflection at grazing 
incidence and different n-beam approximations differ 
in the number of confluent poles of this dispersion 
equation. The differences between Ewald's and 
Bethe-Laue's theory are discussed. 

1. Introduction 

The dynamical theory of diffraction (or the theory of 
multiple scattering) of radiation in crystals is con- 
nected with the names of P. P. Ewald, H. Bethe and 
M. von Laue. 

In the so-called 'conventional' dynamical theory 
of diffraction, some approximations are used which 
means that the final formulae are not valid in some 
extreme cases. This unfavorable situation occurs, for 
example, when the Bragg angle is near 7r/2, at grazing 
incidence, or at skew reflection. The usual extended 
dynamical theory of diffraction tries to remove these 
difficulties by making the von Laue conventional 
theory more precise (Afanas'ev & Melkonyan, 1983; 
Bedyfiska, 1974; Brfimmer, H6che & Nieber, 1979; 
H~irtwig 1977). But this endeavor, after a more exact 
solution of the diffraction problem, also supplies an 
incentive for a new study of Ewald's fundamental 
ideas (Ewald, 1916, 1917). 

In the following we shall deal with the scattering 
of particles on a periodic system of Fermi delta poten- 
tials which correspond to the diffraction of neutrons 
on crystals, using the quantum-mechanical generaliz- 
ation of Ewald's theory. But as the ideas of the elec- 
trical dipole and electromagnetic waves are more 
familiar than the T matrix and de Broglie's waves, 
we explain first the fundamental ideas of Ewald's 
procedure on the problem of diffraction of light in a 
crystal. 

2. Fundamental equations of Ewald's extended theory 

Ewald's starting point was different from that of Bethe 
and Laue. The aim of Ewald in 1910 (i.e. before the 
experimental discovery of X-ray diffraction) was to 
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support by optical theoretical studies the hypothesis 
for the existence of the crystal lattice. Thus it was 
quite natural to consider the crystal as a discrete 
system of classical electrical vibrating dipoles 

pm( t) = pm eXp (--itot) (2.1) 

fixed at the lattice points 

Rm = mla~ + m2a2 + m3a3, 

ml, m2, m3 = 0, + 1 , . . . ,  +oo,  (2.2) 

of a crystal lattice. The dipoles are coupled with 
retarding electromagnetic forces. An external elec- 
tromagnetic wave 

Ein c = f exp (--itot + ikr) (2.3) 

excites the mechanical vibrations of this system of 
coupled dipoles. The electromagnetic waves gener- 
ated by oscillating dipoles-  and superposed on the 
incident w a v e - a r e  registered outside the crystal as 
the reflected and transmitted waves. Thus the problem 
of Ewald was in fact the mechanical problem of 
forced oscillations of a system of electromagnetically 
coupled oscillators. 

Let us formulate the above ideas in a mathematical 
form (Litzman, 1978, 1980). The electromagnetic field 
of the oscillating dipole pro(t) is expressed in terms 
of its Hertz vector 

Z( t) = R-Ip( t -  R~ c) (2.4) 

in the usual way, 

E = [grad div-(1/c2)02/dtE]z, 

H = c -~ rot Z. (2.5) 

Neglecting the magnetic forces we get for the ampli- 
tudes Pm of the dipoles (2.1) the equations 

Pm = a / ~'  [(grad div+ kE)mPn e x p  (ikRmn)/Rm.] 
kn~m 

+ f  exp (ikRm)}, (2.6) 

where a is the polarizability, k -- w/c, c is the velocity 
of light, Rm, = [Rm - R,I and in the sum the term n = m 
is omitted. 

O 1991 International Union of Crystallography 



84 EXTENDED DYNAMICAL THEORY OF DIFFRACTION 

Thus the first task of Ewald's theory is to find the 
solutions of the infinitely great system of non- 
homogeneous algebraic equations (2.6). These can be 
found in the form of 'dipole waves' 

pm(Rj)=Uj exp (iKjRm). (2.7) 

It is important to be clear that (2.7) is simply a 
kinematical description of a steady state of oscillation 
of dipoles and not an electromagnetic wave running 
through the medium in which the dipoles are situated. 
The electromagnetic field generated by the 'dipole 
wave' (2.7) is derived again from its Hertz potential 

Z(R)j -- E [Pm(Kj)/IR- Rml] 
i n  

x e x p [ - i w t + i t o l R - R m l / C ]  (2.8) 

by means of (2.5). 
Thus, the electromagnetic field outside the crystal 

is given by the superposition 

E = f exp ( -  iwt + ikr) 

+ ~ [grad d i v -  c -2 02/Ot2]Zj. (2.9) 
J 

The procedure for the solution of (2.6) was 
explained in previous papers (Litzman, 1978, 1980). 

The generalization of Ewald's classical dynamical 
theory of the diffraction of light to the quantum- 
mechanical problem of the diffraction of particles 
was handled by Lax (1951) and its application to the 
diffraction of neutrons can be found, for example, in 
Dederichs (1972) or Sears (1989). In this theory the 
crystal diffraction centers are characterized not by the 
classical dipole moments pm(t) but by the quantum- 
mechanical Tin matrices 

Tm(r,r ' )=(h2/Zm)47rQ6(r-Rm)6(r ' -Rm).  (2.10) 

Q is the scattering length. 
Now let us recall briefly the main results of our 

previous papers on the dynamical theory of diffrac- 
tion of particles on a periodic system of point scat- 
terers [Fermi 6 potentials (2.10)] (Litzman, 1986; 
Litzman & Dub 1990). We shall deal with the diffrac- 
tion on a simple lattice forming a semi-infinite crystal 

Rm = m~a~ + m2a2 + m3a3, 

m= (m~, m2, m3), 

ml, m2=0 ,  +1, +2, . . . ,  +oo, 

m3=0 ,  1, 2 , . . .  ,co, (2.11) 

and a3z > O. The origin of the orthogonal coordinate 
system lies at the lattice point (0, 0, 0), the plane Oxy 
coincides with the crystal surface plane (a~, a2). The 
axis 0z (the unit vector e3) and the vector a~ x a2 point 
into the crystal. The lattice (g~, g2, g3) is reciprocal 
to the three-dimensional lattice (a~, a2, a3), i.e. giaj = 
2zr60, i , j =  1, 2,3, whereas the lattice (b~, b2) is 

reciprocal to the two-dimensional lattice (31, a2), i.e. 
biaj = 27r8o, bi-Le3, i, j = 1, 2. Further, c" and c; denote 
the components of the vector c = c"+ c" parallel and 
perpendicular to the crystal surface, respectively. 
Then, bl = g~', b2 = g~, g~ = 0. 

Let k be the wavevector of the incident wave, k~ > 0. 
We assign to this vector k and to each (p, q), where 

± 
p, q are integers, three other vectors kpq and Kpq(k) 
as follows: 

k~q = k"+ pbl + qb2 (2.12a) 
± 

Kpq(k) = kpq±eaKpqz(k), (2.12b) 

where 

g~qz(k) = + [ k 2 -  (k~q)2] '/2 . (2.12c) 

This means that 
± 

IKpq(k)l-- k. (2.12d) 

For (p, q ) =  (0, 0), K~o(k) = k and Kooz(k)= kz hold. 
± 

Further, we define Opq as 

± Opq(k) = Opq ~ ± ± a3Kpq(k) 

=a~kp¢±aa~Kpqz(k). (2.12e) 

Now let us write equations for the diffraction of 
de Broglie's wave f exp (ikr) on the periodic system 
of 8 potentials at the lattice points (2.11). The wave 
function ~ ( r )  describing the diffraction of particles is 

~ ( r )  = f  exp (ikr) 

- ~  Q{[exp ( i k l r - R . l ) ] / l r - l . I }  
II 

x q~"(R,), (2.13) 

which is the superposition of the incident plane wave 
f exp (ikr) and the spherical waves excited by the 
point scatterers forming the crystal (2.11 ). The diffrac- 
tion amplitude of the nth atom is Q~*(R.), where Q 
is the diffraction length of the scatterers (atoms), and 
the 'effective field' ~"(R.) incident on the nth atom 
must satisfy 

~p"(Rn) = f  exp (ikR.) 

- F~' Q { f e x p  (iklRm-R.I)]/IRm-R,I} 
m ~ l a  

X q~m(Rm). (2.14) 

It can be seen that (2.14) for neutrons is quite 
analogous to (2.6) for photons after omitting in the 
latter the operator (grad div + k2). This also holds for 
(2.13) and (2.9), (2.8). 

The solution of the infinite system of non- 
homogeneous algebraic equations (2.14) has the form 

~*(R.)=Y, c]exp(iKjR.) ,  I m K j > 0 ,  (2.15) 
J 

where 

Kj=k"+(1/2zr)(Oj-k"a'~)g3. (2.16) 
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Quantities ~j appearing in (2.16) are solutions of 
the 'dispersion relation' (Litzman, 1986). 

1 + QS'(k") 

- ~  bpq{exp (iO-~q)/[exp ( i~ ) - exp  (i0pq)] 
Pq 

+exp (-iOpq)/[exp ( - i ~ ) - e x p  (-i0~q)]} 

=0, (2.17) 

in which S'(k") is the two-dimensional lattice sum 

S'(k") = Y,' {exp (iklnlal + n2a2l)/ln~al + n2ad 
( n l , n 2 ~ 0 0 )  

x exp [ik"(nla] + n232)]} (2.18) 

and 

bpq - -27riQ/lal × a2l K,qz. (2.19) 

The explicit form of the coefficients cj in (2.15) is 
unimportant for this paper. 

Since the translational symmetry of our problem 
in the directions of the vectors al and 32 is preserved 
it is clear that the wavevectors of the reflected particles 
are the vectors Kpq (2.12b) only. Introducing (2.15) 
into (2.13) we have deduced for the reflectivity ~ (K~) 
in the direction of the vector K~ the formula 

where 

~(KL) = IR1(Ka)I21R2(K~)I2k=/grsz, 

exp (iqq)-  exp (iOo+o) 
R,(KT~) = exp (i~bl) - e x p  (i07~)' 

R2(KT~) =1-1-, exp (i@j)-exp (iO-~o) 
111 . exp ( /~ j ) -  exp (i0~) 

exp (i0)-)- exp (iOL) 
X 

exp ( i0+)-  exp (iO-~o)" 

(2.20) 

(2.21) 

(2.22) 

The details of the derivations of the above formulae 
can be found in Litzman (1986). In (2.21), (2.22) only 
the solutions of (2.17) with Im Oj>0 are used. 
Although (2.20) is invariant to the permutation of 
indices j, for practical cases it is advantageous to 
denote the solution ~ that is near to the pole 0~s as 
Ors and ~o0 = ~1. 

Similar formulae to those above were deduced for 
the reflection of light on a periodic system of dipoles 
(Litzman & R6zsa, 1990). The paper by Avron, Gross- 
man & Hcmgh-Krohn (1983) should also be men- 
tioned in this connection. 

3. The comparison of Ewald's and Bethe-Laue's 
procedures 

In the dynamical theory of diffraction of Bethe 
(1928) and Laue (1948), the crystal is considered as 
a continuous medium. Thus, applying this method 
to the diffraction of neutrons we have to solve the 

Schrfdinger equation 

[ - ( h 2 / 2 m ) A +  V(r)]~ = E~b (3.1) 

with the periodic potential V(r)= V(r+Rm), i.e. 

V(r) = ~  V(G) exp (iGr), (3.2) 
G 

where G are vectors of the reciprocal lattice 
{g], g2, g3}. From the Bloch theorem we write the 
solution of (3.1) as 

OK(r) = Y, C,(G) exp [i(K+ G)r]. (3.3) 
c 

By well known procedures (Sears, 1989; Rauch & 
Petrascheck, 1978) we get for the unknown vectors K 
and for the expansion coefficients C~(G) the follow- 
ing system of homogeneous equations: 

[ E -  V (O) - (h2 /2m) (K+C, )2]C , (G)  

= E V(G-G' )C, (G ' ) .  (3.4) 
G ' # G  

The determinant of the infinitely great system of alge- 
braic equations (3.4) will be denoted as ~(K) and 
the equation for the unknown vector K, 

~(K) =0 ,  (3.5) 

is called the dispersion equation. Its solutions 

K 1 ,  K 2 ,  • • • , K j ,  • • • (3.6) 

determine the wavevectors of the de Broglie waves 
which can propagate through the infinite crystal [see 
(3.3)]. 

If the external wave f exp (ikr) impinges on a semi- 
infinite crystal bordered by the surface Oxy, the 
wavevectors Kj of the waves inside the crystal must 
satisfy besides (3.5) the conditions 

Kj = k -  k6je3 . (3.7) 

Introducing (3.7) into (3.5) we get the fundamental 
equation of Bethe-Laue's theory 

9 ( 6 ) = 0  (3.8) 

for the evaluation of the wavevectors of de Broglie's 
waves in the crystal. 

Of course, as the order of the determinant of the 
system (3.4) is infinite, it is not possible to write (3.5) 
in an explicit form and approximate procedures 
should be applied. If the wavevector kn of the incident 
wave satisfies the Bragg reflection condition for one 
vector G of the reciprocal lattice only, i.e. 

(kB + G) 2 = k 2, G = rgl + sg2 - -  rig3, 

r, s, n are integers, (3.9) 

the two-beam approximation is used and the system 
(3.4) is reduced to 

[ E -  V(O)-(h2/2m)x2]C. , (O)  = V(-G)C.,(G) 

(3.10) 

[ E -  V(O) - (h2 /2m) (K+G)2]C, , (G)  = V(G)C~(0). 
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Then (3.8) is of second order in the conventional 
theory (Sears, 1989; Rauch & Petrascheck, 1978) and 
of fourth order in the extended one (Bedyfiska, 1974). 

Now let us compare the final results of Ewald's 
and Bethe-Laue's procedures. 

In Ewald's conception, (3.8) is replaced by (2.17) 
which in contrast to (3.8) has a well arranged analyti- 
cal form for an arbitrary number of beams. As I bpq[ ,~ 1 
and IQS'] ~ 1, the solutions qJj of (2.17) are near to 

± 

the poles Opq. In a semi-infinite crystal the solutions 
with Im q,j > 0 have a physical meaning only. 

It can be shown [see Appendix 1 in Litzman & 
Dub (1990)] that the Bragg reflection condition (3.9) 
is equivalent to 

0g0(ks) = 0~(ks)  +27rn, n integer, (3.11) 

i.e. to the confluence of two poles in (2.17). At grazing 
incidence kz ~ - k z ,  thus 

0oo = - " ' - "  a3zkz "- " " + a3K -- a3k -k- a3zk z = 0oo. (3.12) 

From this point of view, the grazing incidence is a 
special case of Bragg reflection (3.11) for n = 0  and 
(rs)  = (00). We shall show in another paper that this 
specularly reflected beam is 'strong' only if the index 
of refraction is smaller than one. This is true for 
neutrons but not for electrons handled in Bethe's and 
Laue's papers (Beth, 1928; Laue, 1948). 

The reflectivity (2.20) is an explicit function of the 
solutions Oj of (2.17), whereas in Bethe-Laue's theory 
a further procedure for determining the coefficients 
C,,(G) in (3.3) (applying the boundary conditions for 
continuous media) is necessary. Following James 
(1963) their use is not logically justified when the 
waves concerned have lengths comparable with atom 
distances. On the other hand, as (2.14) are algebraic 
equations for a discrete system, no boundary condi- 
tions in Ewald's theory are used. 

In Bethe-Laue's theory the formula for the intensity 
of the reflected ray is expressed as a function of the 
deviation a¢  of the incident ray from the Bragg reflec- 
tion position. On the other hand, the parameter 
measuring the deviation of the incident beam from 
the Bragg reflection position in (2.20) is not the angle 
asc but the difference [see (3.11)] 

rl = O-~o(k ) -OL(k ) -Z 'n 'n ,  (3.13) 

whereby the reflected beam need not lie - as usually 
supposed when applying Bethe-Laue's conventional 
theory - in the plane of incidence. Thus, (2.17), (2.20) 
are valid for skew reflection as well. If the reflected 
beam does lie in the plane of incidence a simple 
relation between 77 and a~: was deduced (Litzman & 
Dub, 1990), 

~7 = t~A~ +/3 (A~:)2 + 0(A~:)3. (3.14) 

It can be shown that the well known two-beam 
approximate formula of Bethe-Laue's conventional 

theory for the reflectivity on a semi-infinite crystal 
can be deduced from the exact one (2.20) (based on 
Ewald's conception) using the following approxima- 
tions: 

(i) R 2 ( K ~ ) =  1 in (2.20); (3.15) 

(ii) the exact dispersion equation (2.17) is replaced 
by an approximate one of the second order in exp (i0) 
by omitting in the sum ~p all terms except those with 
0L and 00o. Then using 13.14) and taking into con- 
sideration the terms of first order in a~, we get the 
usual expression of the conventional Bethe-Laue 
theory for the intensity of the reflected beam, which 
of course is not valid for the Bragg angle 0B = rr/2. 
Taking into account in (3.14) the terms of second 
order in A~:, we get for the intensity a modified formula 
valid for 0n = rr/2 too, which agrees with that 
deduced by Brfimmer, H6che & Nieber (1979) in the 
extended Laue dynamical theory. 

One of the aims of the extended dynamical theory 
of diffraction is the study of Bragg reflection at grazing 
incidence. To fulfil all boundary conditions, Laue's 
theory deals with the dispersion equation (3.8) of 
fourth order (H~irtwig, 1977). In Ewald's conception, 
for Bragg reflection at grazing incidence, (3.11) and 
(3.12) are simultaneously valid, which means that at 
asymmetric reflection three poles of the dispersion 
equation (2.17) coincide. If the reflected beam is also 
very near the surface, besides (3.11) and (3.12), 

Or +~- OL (3.16) 

holds, which means that four poles of (2.17) coincide. 
The approximation (3.15) is then no longer valid. 
Similar considerations hold for the confluence of the 
poles of the dispersion equation for different n-beam 
approximations. We intend to discuss these problems 
in a future paper. 

4. Concluding remarks 

The crucial point of the dynamical theory of diffrac- 
tion is the construction and analysis of the dispersion 
equation. In Bethe-Laue's theory it has the form (3.8) 
where ~ is the determinant of the infinite system of 
homogeneous algebraic equations (3.4). Thus it is 
difficult to write @(5) explicitly. On the other hand, 
the dispersion equation of Ewald's theory (2.17) has 
a simple analytical form and can be written immedi- 
ately. Bragg reflections for different n-beam approxi- 
mations or at grazing incidence differ in Ewald's 

± conception in the number of confluent poles 0pq of 
(2.17) only and the intensity of the reflected beams 
(2.20) is given explicitly by the solutions ~0j of (2.17). 
Formulae (2.17), (2.20), (2.21) and (2.22) are exact 
and are valid for skew reflection as well. The strength 
of interaction modifies the value of the constants Q 
and bpq only. 
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The case of a crystal of finite thickness was dealt 
with by Litzman & R6zsa (1990). The dispersion 
equation (2.17) is the same but the formula for the 
intensity does not have the simple form (2.20). 

In the case of a crystal with s atoms in the basis 
the dispersion equation has a more complicated form 
(Litzman, 1986): 

det]ll-C-~({exp[i(O-~q-~O)]-l}-'Bpq 
pq 

+{exp[-i(Op+q-qJ)]-l}-'Dpq)] , (4.1) 

where I, C, Bpq and Dpq are matrices of order s. 
Neither the dispersion equation (4.1) nor the for- 
mulae for the intensities of the reflected and transmit- 
ted waves have been analyzed yet. 

The dispersion equation for the diffraction of light 
on a periodic system of dipoles has a form similar to 
(4.1) (Litzman, 1978, 1980). 

We think that a more profound study of the exact 
Ewald analytical formulae would be useful to test 
different approximations used in Bethe-Laue's con- 
ventional and extended dynamical theory, not only 
for neutrons but also for X-rays, as was shown 
for simple examples in Litzman & Dub (1990) and 
Litzman & R6zsa (1990). 
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Perturbation Theory in High-Energy Transmission Electron Diffraction 
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Abstract 

A perturbation theory for many-beam high-energy 
transmission electron diffraction in noncentrosym- 
metric crystals is described for both the nondegener- 
ate and degenerate cases. This perturbation theory 
differs from the conventional quantum-mechanical 
perturbation theory by perturbing the electron 
wavevectors instead of the total electron energy, 
which is constant for elastically scattered electrons. 
The relations between the perturbation theory and 
some other approximations commonly used in elec- 
tron diffraction are discussed. It is shown that the 
few-beam approximation and the Kambe approxima- 
tion are both applications of degenerate perturbation 
theory. Finally, as an example, this degenerate per- 
turbation theory is applied to obtain an analytical 
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solution to a four-beam case with two systematic (0 
and g) and two nonsystematic (h and l) beams. This 
four-beam solution shows that the intensity of a four- 
beam interaction depends on all the four three-phase 
invariants involved, and also shows that the effects 
of the g beam on the three-beam interaction of 0, h 
and l are localized to the region near the Bragg 
condition of g. This may serve as a guide for future 
experiments using three-beam interactions for the 
measurement of structure-factor phases of an 
unknown structure. 

I. Introduction 

The formal theory of high-energy electron diffraction 
in a quantum-mechanical framework was established 
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